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On the Quantum Probability Flux Through Surfaces
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We remark that the often ignored quantum probability current is fundamental
for a genuine understanding of scattering phenomena and, in particular, for the
statistics of the time and position of the first exit of a quantum particle from a
given region, which may be simply expressed in terms of the current. This simple
formula for these statistics does not appear as such in the literature. It is
proposed that the formula, which is very different from the usual quantum
mechanical measurement formulas, be verified experimentally. A full under-
standing of the quantum current and the associated formula is provided by
Bohmian mechanics.
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1. INTRODUCTION

In Born’s interpretation of the wave function , at time ¢ of a single par-
ticle of mass m, p,(x) = | ,(x)|? is the probability density for finding the
particle at x at that time. The consistency of this interpretation is ensured
by the continuity equation

dp .
o diveiv =0
T +div-j

where j¥'=1/m Im y * Vi, is the quantum current (A=1).

The quantum current is usually not considered to be of any opera-
tional significance (see however ref. 1). It is not related to any standard
quantum mechanical measurement in the way, for example, that the den-
sity p, as the spectral measure of the position operator, gives the statistics
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for a position measurement. Nonetheless, it is hard to resist the suggestion
that the quantum current integrated over a surface gives the probability
that the particle crosses that surface, i.e., that

j¥-dS dt (1

is the probability that a particle crosses the surface element 4S in the time
dt. However, this suggestion must be taken “cum grano salis” since
j% - dS dr may be somewhere negative, in which case it cannot be a prob-
ability. But before discussing the situations where j¥:- dS dr can be negative
we want to consider first a regime for which we can expect this quantity to
be positive, so that its meaning could in fact be the crossing probability,
namely, the regime described by scattering theory.

2. STANDARD SCATTERING THEORY

In textbooks on quantum mechanics the principal objects of interest
for scattering phenomena are nonnormalized stationary solutions of the
Schrodinger equation with the asymptotic behavior

ipx

4

Y(x) "R e X £(6, ¢)

X

where ¢P»"* represents an incoming wave, p = |p,, |, and f(0, ¢) ¢”*/x is the
scattered wave with angular dependent amplitude. (6, ¢) gives the prob-
ability for deflection of the particle in the direction specified by 8, ¢ by the
well-known formula for the differential cross section

do = | f(6, $)|? sin 0 d6 d¢ 2)

This representation of a scattering process is, however, not entirely con-
vincing since Born’s rule is not directly applicable to non-normalizable
wave functions. More important, this picture is entirely time-independent
whereas the physical scattering event is certainly a process in space and
time. Indeed, according to some experts, the arguments leading to the
formula (2) for the cross section “wouldn’t convince an educated first
grader” (ref. 2, p. 97).

It is widely accepted that the stationary treatment is justified by an
analysis of wave packets evolving with time. Using a normalized wave
packet v (x)=e ""y(x) one immediately obtains by Born’s rule the
probabilities for position measurements. But what are the relevant
probabilities in a scattering experiment? In mathematical physics (e.g.,
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ref. 3, p. 356, and ref. 4) an answer to this is provided by Dollard’s scat-
tering-into-cones theorem:‘*!

tim [ @by P =] @12 0P

— x

This connects the asymptotic probability of finding the particle in some
cone C with the probability of finding its asymptotic momentum p in that
cone, where Q =s-lim, , , e"e ' is the wave operator (“s-lim”
denotes the strong limit), H = H,+ V, with Hy= —1/2m V?, and " denotes
the Fourier transform. It is generally believed that the left hand side of the
scattering-into-cones theorem is exactly what the scattering experiment
measures, as if the fundamental cross section associated with the solid
angle X (to be identified with a subset of the unit sphere) were

Teoned £) = lim | dx (%)
Cye

t—

where C is the cone with apex at the origin subtended by X (see Fig. 1).
To connect this with (2), which is independent of the details of the initial

Fig. 1. The geometry of the scattering-into-cones and the flux-across-surfaces theorems.
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wave function, one may invoke the right hand side of the scattering-into-
cones theorem to recover the usual formula with additional assumptions on
the initial wave packet (see ref. 3 p. 356 for a discussion of this.)

So far the mathematics. But back two physics. The left hand side of
the scattering-into-cones theorem is the probability that at some large but
fixed time, when the position of the particle is measured, the particle is
found in the cone C. But does one actually measure in a scattering experi-
ment in what cone the particle happens to be found at some large but fixed
time? Is it not rather the case that one of a collection of distant detectors
surrounding the scattering center fires at some random time, a time that is
not chosen by the experimenter? And isn’t that random time simply the
time at which, roughly speaking, the particle crosses the detector surface
subtended by the cone?

This suggests that the relevant quantity for the scattering experiment
should be the quantum current. If the detectors are sufficiently distant from
the scattering center the current will typically be outgoing and (1) will be
positive. We obtain as the probability that the particle has crossed some
distant surface during some time interval the integral of (1) over that time
interval and that surface. The integrated current thus provides us with a
physical definition (see also ref. 6, p. 164) of the cross section:

oud D)= lim [ di[ ju.ds (3)

R—oa Jg RY

where RZ is the intersection of the cone Cj with the sphere of radius R
(see Fig. 1). As before, one would like to connect this with the usual for-
mulas and hence we need the counterpart of the scattering-into-cones
theorem—the flux-across-surfaces theorem—which provides us with a
formula for ay,,:

——

lim Oodtf j%.ds=f dp 127 9(p)|? (4)
0 RX Cy

R—-

The fundamental importance of the flux-across-surfaces theorem was
first recognized by Combes, Newton and Shtokhamer.!” To our knowledge
there exists no rigorous proof of this theorem, although the heuristic argu-
ment for it is straightforward. Let us consider first the “free flux-across-
surfaces theorem,” where i, := ¢ "oty

tim [“ar[ eas=] apper (5)
z
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(This free theorem, by the way, should be physically sufficient, since the
scattered wave packet should in any case move almost freely after the scat-
tering has essentially been completed (see also ref. 7).)

Now the current should contribute to the integral in (5) only for large
times, because the packet must travel a long time before it reaches the dis-
tant sphere at radius R. Thus we may use the long-time asymptotics of the
free evolution. We split ¥ (x) = (e """y )(x) into

3/2
lll,(x) — <%> j d3y eim |x —y|-/2/l//(y)

372
— T e im.\'z/'lel; mﬁ
it t

¥, d? i a,
+ <m> elm.\' /2t J‘ Y e —imx y,ﬂl(enny /2t 1) l//(y)

it (2m)*?

Since (e” — 1) -0 as t - oo, we may neglect the second term, so that
as t - oo we have that

372 N .
l//,(X) ~ <m> e"”"\../ZIw <$> (6)

it

(This asymptotics has long been recognized as important for scattering
theory, e.g., refs. 8 and 5.) From (6) we now find that

2

Y. /mx
i (%) ()
t
(Note that by (7) the current is strictly radial for large times, so that j¥ . dS

is indeed positive.)
Using now the approximation (7) and substituting p:=mx/t we

readily arrive at
~ fmX
i(%7)

o o 3
fo di fsz*”' dS~ jﬂ dr ij (?)

=L}l dp p* L do |Y(p)I* =L‘V d’p |Y(p))?

l R
400 = Im Y 5(x) Vw,(x)%(’}’)

2
X Js
t

This heuristic argument for the free flux-across-surfaces theorem (5) is
so simple and intuitive that one may wonder why it does not appear in any
primer on scattering theory. (For a rigorous proof see ref. 9).
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To arrive at the general result (4) one may use the fact that the long
time behavior of ¥ (x) :=e~#y(x) is governed by e 'Qt y (see, e.g,
ref. 5) so that the asymptotic current is simply

2

400 = Im Y () V¥, (x) » <§>

yielding (4).

3. NEAR FIELD SCATTERING

We turn now to a much more subtle question (see also ref. 12): What
happens if we place the detectors not too distant from the scattering center
and prepare the wave function near the scattering center, i.e., what happens
if we do not take the limit R — oo so central to scattering theory? The
detectors will of course again fire at some random time and position, but
what now of the statistics? This question is not quite as innocent as it
sounds; it concerns in fact one of the most debated problems in quantum
theory: what we are considering here is the problem of time measurement,
specifically the problem of escape time (and position at such time) of a par-
ticle from a region G. It is well known that there is no self-adjoint time
observable of any sort and there is a huge and controversial literature on
this and on what to do about it. (See ref. 13 and 14 and references therein.)
Note also that since the exit position is the position of the particle at a
random time, it cannot be expressed as a Heisenberg position operator in
any obvious way.

The obvious answer (see ref. 15 for a one-dimensional version) is, of
course, provided by (1), provided that the boundary of G is crossed at
most once by the particle (whatever this is supposed to mean for a quan-
tum particle), so that every crossing of the boundary of G is a first crossing,
and provided of course that (1) is nonnegative.* Notice that the preceding
provisos might well be expected to be intimately connected. We thus
propose that (1) indeed gives the first exit statistics whenever the following
current positivity condition (a condition on both the wave function and on
the surface)

CPC: Vit >0 and Vx e boundary of the region G
i"(x,t)-dS>0
is satisfied.

4 The wave function ¥, in (1) should of course be understood as referring to the Schrodinger
evolution with no detectors present.
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supp

Fig. 2. Escape experiment: A region G is defined by an array of detectors, which surround
a smaller region, supp ¥4, in which a particle’s wave function is initially localized. The detec-
tors record the time at which they fire. Typically only one of the detectors will fire, and the
position of this detector yields the measured exit position.

We predict that the statistics given by (1) will (approximately) be
obtained in an experiment on an ensemble of particles prepared with
(approximately) CPC wave function y which is initially well localized in
some region G whenever the detectors around the boundary of G (see
Fig. 2) are sufficiently passive, a condition that needs to be more carefully
delineated but which should widely be satisfied. As to how widely the CPC
is satisfied, this is not easy to say. We do note, however, that since whether
or not it is satisfied depends upon the region G upon which we focus and
around which we place our detectors, it may often be possible to suitably
adjust the region G so that the CPC becomes satisfied, at least approxi-
mately, even if the CPC flails to be satisfied for our original choice of G.

A simple example of a situation where the CPC does hold and where
one may easily compute the exit-time statistics is the following. A spheri-
cally symmetric Gaussian wave packet, with initial width o, which is
initially located at the center of G, a sphere with radius R, evolves freely.
One readily finds for the exit time probability density p(¢) := [ - dS that

3 2\ —5/2
p( Rt 0.2 + 4 e( — 1720} R + (42mal)?)
o’ 2mo?
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Of course, some important questions remain: The expression (1} is not
a probability for all wave functions—so what if anything does it physically
represent in general? And what in the general case is the formula for the
first exit statistics?

We stress again that the prediction (1) for the exit statistics is not of
the standard form, as given by the quantum formalism, since it is not con-
cerned with the measurement of an operator as observable.” However, no
claim is made that the expression (1) and its interpretation cannot also be
arrived at from standard quantum mechanics—it presumably can—e.g., by
including the measurement devices in the quantum mechanical analysis.
(See however ref 13.) After all, though there is no standard quantum
observable (i.e., self-adjoint operator) to directly describe the,escape time,
the “pointer variable” for the detectors is a standard quantum observable,
whose probability distribution after the experiment can in principle be
computed in the standard way.

In the next section we shall explain how the current as the central
object for escape and scattering phenomena arises naturally within
Bohmian mechanics,"'” '®’ where the physical meaning of (1) turns out to
be the measure for the expected number of signed crossings, which of
course can be negative.

4. BOHMIAN MECHANICS

In Bohmian mechanics a particle moves along a trajectory x(¢) deter-
mined by

d o 1. W,
d—IX(t)—v (X(t))—mlm v (x(1)) (8)

where , is the particle’s wave function, evolving according to
Schrédinger’s equation. Moreover, if an ensemble of particles with wave
function ¥ is prepared, the positions x of the particles are distributed
according to the quantum equilibrium measure P with density p = |/|® (¥
normalized).!'®

In particular, the continuity equation for the probability shows that
the probability flux (|¢,|% ¥, |> v¥) is conserved, since |y, |2 v¥ =j¥.

Hence, given ¢, the solutions x(¢, x,) of equation (8) are random tra-
jectories, where the randomness comes from the P¥-distributed random
initial position x,, Y being the initial wave function.

% Nor are they given by a positive-operalor-valued measure (POV), which has been proposed
as a generalized quantum observable, see ref. 16.
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Fig. 3. In Bohmian mechanics the flow lines of the current represent the possible trajectories
of the Bohmian particle. Some Bohmian trajectories leaving G are drawn ({or the Schrodinger
evolution without detectors, see footnote 1).

Consider now, at time ¢ =0, a particle with wave function ¢ localized
in some region G<R® with smooth boundary. Consider the number
N(dS, dt) of crossings by x(?) of the surface element dS of the boundary
of G in the time dr (see Fig. 3). Splitting N(dS, dt)=: N, (dS, dt}+
N_(dS, dt), where N, (dS, dt) denotes the number of outward crossings
and N _(dS, dt) the number of backward crossings of dS in time dt, we
define the number of signed crossings by N(dS, dt)=: N, (dS,dt)—
N _(dS, dt).

We can now compute the expectation values with respect to the prob-
ability P¥ of these numbers in the usual statistical mechanics manner. Note
that for a crossing of dS'in the time interval (1, ¢ + df) to occur, the particle
has to be in a cylinder of size |v¥ dt - dS| at time ¢. Thus we obtain for the
expectation value

EY(N(dS, dt)) = W, |2 V¥ dt - dS| = |j* - dS| dt

and similarly E¥(N(dS, dt)) =j¥ - dS dt.

If we further introduce the random variables ¢, the first exit time from
G, t,:=inf{t > 0|x(¢) ¢ G}, and x,, the position of first exit, x, =x(z,), we
obtain a very natural and principled explanation of what we arrived at in
a heuristic and suggestive manner in our treatment of scattering theory and
the statistics of the first exit time and position. For Bohmian mechanics the
CPC implies that every trajectory crosses the boundary of G at most once,
and in this case we have

E¥(N(dS, dt)) =EY((N (dS, dt))
=0-P¥(t, ¢ drorx, ¢dS)+1.-P¥(x,edS and ¢,edt)
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and we find for the joint probability of exit through dS in time dt
PY(x,edS and t,edt)=j" - dS dt 9)

In principle one could compute the first exit statistics also when the
CPC fails to be satisfied. These are in fact given by the same formula (9)
as before, provided one replaces j¥' by the truncated probability current j
arising from killing the particle when it reaches the boundary of G. This is
simply given, on the boundary of G, by

j¥(x) if (¢, x)is afirst exit from G
~wl t = ] ’ 10
(%) {0 otherwise (10)
where (¢, x) is a first exit from G if the Bohmian trajectory passing through
X at time ¢ leaves G at this time, for the first time since ¢t = 0. Thus, we have
generally that

PY(x,edS and t,edt)=j"-dS dt (1)

However, there is an important difference between the CPC proba-
bility formula (9), involving the usual current, and the formula (11),
involving the truncated current. The usual current is well defined in
orthodox quantum theory, even if it is true, as we argue, that its full
significance can only be appreciated from a Bohmian perspective. The trun-
cated current cannot even be defined without reference to Bohmian
mechanics, since whether or not (1, x) is a first exit from G depends upon
the full and detailed trajectory up to time ¢ (In particular, a different
choice of dynamics, as for example given by stochastic mechanics,!'>!"
would yield a different truncated current. It is natural to wonder whether
the truncated current given by Bohmian mechanics provides in the general
case the best fit to the measured escape statistics expressible without
reference to the measuring apparatus.)

Finally, we note that in the context of scattering theory our definition
(3) of oy, captures exactly what it should once one has real trajectories,
namely the asymptotic probability distribution of exit positions,

oqux(Z) = lim P¥x,eRX)

R—

This follows from the fact that the expected number of backward crossings
of the sphere of radius R vanishes as R — o0 (see ref. 9).
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